A Theoretical Treatment of Related-Key Attacks: RKA-PRPs, RKA-PRFs, and Applications
نویسندگان
چکیده
We initiate a theoretical investigation of the popular block-cipher design-goal of security against “related-key attacks” (RKAs). We begin by introducing definitions for the concepts of PRPs and PRFs secure against classes of RKAs, each such class being specified by an associated set of “related-key deriving (RKD) functions.” Then for some such classes of attacks, we prove impossibility results, showing that no block-cipher can resist these attacks while, for other, related classes of attacks that include popular targets in the block cipher community, we prove possibility results that provide theoretical support for the view that security against them is achievable. Finally we prove security of various block-cipher based constructs that use related keys, including a tweakable block cipher given in [17]. We believe this work helps block-cipher designers and cryptanalysts by clarifying what classes of attacks can and cannot be targets of design. It helps block-cipher users by providing guidelines about the kinds of related keys that are safe to use in constructs, and by enabling them to prove the security of such constructs. Finally, it puts forth a new primitive for consideration by theoreticians with regard to open questions about constructs based on minimal assumptions.
منابع مشابه
Pseudorandom Functions and Permutations Provably Secure against Related-Key Attacks
This paper fills an important foundational gap with the first proofs, under standard assumptions and in the standard model, of the existence of PRFs and PRPs resisting rich and relevant forms of relatedkey attack (RKA). An RKA allows the adversary to query the function not only under the target key but under other keys derived from it in adversary-specified ways. Based on the Naor-Reingold PRF ...
متن کاملImproved Constructions of PRFs Secure Against Related-Key Attacks
Building cryptographic primitives that are secure against related-key attacks (RKAs) is a well-studied problem by practitioners and theoreticians alike. Practical implementations of block ciphers take into account RKA security to mitigate fault injection attacks. The theoretical study of RKA security was initiated by Bellare and Kohno (Eurocrypt ’03). In Crypto 2010, Bellare and Cash introduce ...
متن کاملRelated-Key Secure Pseudorandom Functions: The Case of Additive Attacks
In a related-key attack (RKA) an adversary attempts to break a cryptographic primitive by invoking the primitive with several secret keys which satisfy some known relation. The task of constructing provably RKA secure PRFs (for non-trivial relations) under a standard assumption has turned to be challenging. Currently, the only known provably-secure construction is due to Bellare and Cash [7]. T...
متن کاملCryptography Secure against Related-Key Attacks and Tampering
We show how to leverage the RKA (Related-Key Attack) security of blockciphers to provide RKA security for a suite of high-level primitives. This motivates a more general theoretical question, namely, when is it possible to transfer RKA security from a primitive P1 to a primitive P2? We provide both positive and negative answers. What emerges is a broad and high level picture of the way achievab...
متن کاملRKA-KDM secure encryption from public-key encryption
We construct secret-key encryption (SKE) schemes that are secure against related-key attacks and in the presence of key-dependent messages (RKA-KDM secure). We emphasize that RKA-KDM security is not merely the conjunction of individual security properties, but covers attacks in which ciphertexts of key-dependent messages under related keys are available. Besides being interesting in their own r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003